Enzymatic Synthesis of S-Adenosylmethionine Using Immobilized Methionine Adenosyltransferase Variants on the 50-mM Scale
نویسندگان
چکیده
S-adenosylmethionine (SAM), an important metabolite in all living organisms, has been widely used to treat various diseases. To develop a simple and efficient method to produce SAM, an engineered variant of the methionine adenosyltransferase (MAT) from Escherichia coli was investigated for its potential use in the enzymatic synthesis of SAM due to its significantly decreased product inhibition. The recombinant I303V MAT variant was successfully produced at a high level (~800 mg/L) with approximately four-fold higher specific activity than the wild-type MAT. The recombinant I303V MAT was covalently immobilized onto the amino resin and epoxy resin in order to obtain a robust biocatalyst to be used in industrial bioreactors. The immobilized preparation using amino resin exhibited the highest activity coupling yield (~84%), compared with approximately 3% for epoxy resin. The immobilized enzyme was more stable than the soluble enzyme under the reactive conditions, with a half-life of 229.5 h at 37 ◦C. The KmATP value (0.18 mM) of the immobilized enzyme was ca. two-fold lower than that of the soluble enzyme. Furthermore, the immobilized enzyme showed high operational stability during 10 consecutive 8 h batches, with the substrate adenosine triphosphate (ATP) conversion rate above 95% on the 50-mM scale.
منابع مشابه
Biosynthesis of S-Adenosylmethionine by Magnetically Immobilized Escherichia coli Cells Highly Expressing a Methionine Adenosyltransferase Variant.
S-Adenosylmethionine (SAM) is a natural metabolite having important uses in the treatment of various diseases. To develop a simple and effective way to produce SAM, immobilized Escherichia coli cells highly expressing an engineered variant of methionine adenosyltransferase (MAT) were employed to synthesize SAM. The recombinant I303V MAT variant was successfully produced at approximately 900 mg/...
متن کاملMethionine adenosyltransferase S-nitrosylation is regulated by the basic and acidic amino acids surrounding the target thiol.
S-Adenosylmethionine serves as the methyl donor for many biological methylation reactions and provides the propylamine group for the synthesis of polyamines. S-Adenosylmethionine is synthesized from methionine and ATP by the enzyme methionine adenosyltransferase. The cellular factors regulating S-adenosylmethionine synthesis have not been well defined. Here we show that in rat hepatocytes S-nit...
متن کاملL-methionine availability regulates expression of the methionine adenosyltransferase 2A gene in human hepatocarcinoma cells: role of S-adenosylmethionine.
In mammals, methionine adenosyltransferase (MAT), the enzyme responsible for S-adenosylmethionine (AdoMet) synthesis, is encoded by two genes, MAT1A and MAT2A. In liver, MAT1A expression is associated with high AdoMet levels and a differentiated phenotype, whereas MAT2A expression is associated with lower AdoMet levels and a dedifferentiated phenotype. In the current study, we examined regulati...
متن کاملInteractions of Methionine and Selenomethionine with Methionine Adenosyltransferase and Ethylene-generating Systems.
Since selenomethionine appears to be a better precursor of ethylene in senescing flower tissue of Ipomoea tricolor and in indole acetic acid-treated pea stem sections than is methionine (Konze JR, N Schilling, H Kende 1978 Plant Physiol 62: 397-401), we compared the effectiveness of selenomethionine and methionine to participate in reactions which may be connected to ethylene biosynthesis. Evid...
متن کاملExpression of secreted His-tagged S-adenosylmethionine synthetase in the methylotrophic yeast Pichia pastoris and its characterization, one-step purification, and immobilization.
S-Adenosylmethionine synthetase (SAM synthetase) catalyzes the synthesis of S-adenosylmethionine (SAM), which plays an important role in cellular functions such as methylation, sulfuration, and polyamine synthesis. To develop a simple and effective way to enzymatically synthesize and produce SAM, a soluble form of SAM synthetase encoded by SAM2 from Saccharomyces cerevisiae was successfully pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017